CSE 332: Data Structures and Parallelism

Section 3: Recurrences and Closed Forms

Terminology	Recurrence Function/Relation	General formula	Closed form
Definition	Piecewise function that mathematically models the runtime of a recursive algorithm (might want to define constants)	Function written as the number of expansion i and recurrence function (might have a summation)	General formula evaluated without recurrence function or summations (force them to be in terms of constants or n)
Example	$\begin{array}{ll} T(n)=c_{1} & , \text { for } n=1 \\ T(n)=T\left(\frac{n}{2}\right)+c_{2}, & \text { otherwise } \end{array}$	$T(n)=T\left(\frac{n}{2^{i}}\right)+i \cdot c_{2}$	$\begin{aligned} & \text { Let } i=\log _{2} n, \\ & T(n)=T\left(\frac{n}{2^{\log _{2} n}}\right)+\log _{2} n \cdot c_{2} \\ & =T(1)+\log _{2} n \cdot c_{2} \\ & =c_{1}+\log _{2} n \cdot c_{2} \end{aligned}$

0. Not to Tree

Consider the function $f(n)$. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.
$1 f(n)$ \{
2 if ($n<=0$) \{

```
3 return 1;
```

$4\}$
5 return $2 * f(n-1)+1$;
6 \}
a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $f(n)$

$$
\begin{array}{ll}
T(n)=c_{0} & , \text { if } n \leq 0 \\
T(n)=T(n-1)+c_{1} & , \text { otherwise }
\end{array}
$$

b) Find a closed form for $T(n)$

Unrolling the recurrence, we get

$$
\begin{aligned}
& T(n)=T(n-1)+c_{1} \\
& =\left[T(n-2)+c_{1}\right]+c_{1} \\
& =T(n-3)+c_{1}+c_{1}+c_{1} \\
& =\ldots \\
& =T(n-k)+k \cdot c_{1}
\end{aligned}
$$

We will reach the base case when $n-k=0 ; k=n$
$T(n)=T(0)+n \cdot c_{1}$
$=c_{0}+n \cdot c_{1}$

1. To Tree

Consider the function $h(n)$. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
1 h(n) {
2 if (n<= 1) {
3 return 1
4 } else {
5 return h(n/2) + n + 2*h(n/2)
6 }
7 }
```

a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $h(n)$

$$
\begin{array}{ll}
T(n)=c_{0} & , \text { if } n \leq 1 \\
T(n)=2 T\left(\frac{n}{2}\right)+c_{1} & , \text { otherwise }
\end{array}
$$

b) Find a closed form for $T(n)$

The recursion tree has height $\lg (n)$, each non-leaf level i has work $c_{1} 2^{i}$, and the leaf level has work $c_{0} 2^{\lg (n)}$. Putting this together, we have:
$c_{0} 2^{\lg (n)}+\left(\sum_{i=0}^{\lg (n)-1} c_{1} 2^{i}\right)=c_{0} n+c_{1}\left(\sum_{i=0}^{\lg (n)-1} 2^{i}\right)$
$=c_{0} n+c_{1}\left(\frac{1-2^{\lg (n)-1+1}}{1-2}\right)$, using the finite geometric series
$=c_{0} n+c_{1}\left(\frac{1-n}{-1}\right)$
$=c_{0} n+c_{1}(n-1)$
$=\left(c_{0}+c_{1}\right) n-c_{1}$

2. To Tree or Not to Tree

Consider the function $f(n)$. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
f(n) {
    if (n <= 1) {
        return 0
    }
    int result = f(n/2)
    for (int i = 0; i < n; i++) {
        result *= 4
    }
    return result + f(n/2)
```

10 \}
a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $f(n)$

We look at the three separate components (base case, non-recursive work, recursive work). The base case is a constant amount of work, because we only do a return statement. We'll label it c_{0}. The non-recursive work is a constant amount of work (we'll call it c_{1}) for the assignments and if tests and a constant (we'll call c_{2}) multiple of n for the loops. The recursive work is $2 T\left(\frac{n}{2}\right)$.

Putting these together, we get:
$T(n)=c_{0} \quad$, if 1
$T(n)=2 T\left(\frac{n}{2}\right)+c_{2} n+c_{1} \quad$, otherwise
b) Find a closed form for $T(n)$

The recursion tree has $\lg (n)$ height, each non-leaf node of the tree does $c_{2} \frac{n}{2^{i}}+c_{1}$ work, each leaf node does c_{0} work, and each level has 2^{i} nodes.

So, the total work is:
$\left(\sum_{i=0}^{\lg (n)-1} 2^{i}\left(c_{1}+c_{2} \frac{n}{2^{i}}\right)\right)+c_{0} \cdot 2^{\lg (n)}$
$=\left(\sum_{i=0}^{\lg (n)-1} 2^{i} c_{1}+c_{2} n\right)+c_{0} \cdot(n)$
$=c_{1} \frac{1-2^{\lg (n)}}{1-2}+c_{2} n \lg (n)+c_{0} n$
$=c_{1}(n-1)+c_{2} n \lg (n)+c_{0} n$

3. Big-Oof Bounds

Consider the function $f(n)$. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
f(n) {
    if (n == 1) {
        return 0
    }
    int result = 0
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            result += j
        }
    }
    return f(n/2) + result + f(n/2)
}
```

a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $f(n)$

$$
\begin{array}{ll}
T(n)=c_{0} & , \text { if } n=1 \\
T(n)=2 T\left(\frac{n}{2}\right)+c_{2} \frac{n(n-2)}{2}+c_{1}, \text { otherwise }
\end{array}
$$

b) Find a Big-Oh bound for your recurrence.

Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as they won't affect the runtime bounds; so, we can ignore the constants c_{1} and c_{2} in our analysis.

Note that $\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2} \in \mathcal{O}\left(n^{2}\right)$. We can, again, ignore the lower-order term $\left(\frac{n}{2}\right)$ since we only want a Big-Oh bound.

The recursion tree has $\lg (n)$ height, each non-leaf node of the tree does $\left(\frac{n}{2^{i}}\right)^{2}$ work, each leaf node does c_{0} work, and each level has 2^{i} nodes.

So, the total work is:

$$
\sum_{i=0}^{\lg (n)-1} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}+c_{0} \cdot 2^{\lg n}=n^{2} \sum_{i=0}^{\lg (n)-1} \frac{2^{i}}{4^{i}}+c_{0} n<n^{2} \sum_{i=0}^{\infty} \frac{1}{2^{i}}+c_{0} n=\frac{n^{2}}{1-\frac{1}{2}}+c_{0} n
$$

This expression is upper-bounded by n^{2} so $T \in \mathcal{O}\left(n^{2}\right)$.

4. Odds Not in Your Favor

Consider the function $g(n)$. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
g(n) {
        if (n <= 1) {
        return 1000
    }
    if (g(n/3) > 5) {
        for (int i = 0; i < n; i++) {
                println("Yay!")
        }
        return 5 * g(n/3)
    } else {
        for (int i = 0; i < n * n; i++) {
                println("Yay!")
        }
        return 4 * g(n/3)
    }
```

16 \}
a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $f(n)$

$$
\begin{array}{ll}
T(n)=c_{0} & , \text { if } n \leq 1 \\
T(n)=2 T\left(\frac{n}{3}\right)+c_{1} n+c_{2} & , \text { otherwise }
\end{array}
$$

b) Find a closed form for $T(n)$

The recursion tree has height $\log _{3}(n)$, each non-leaf level i has work $\left(\frac{c_{1} n}{3^{i}}+c_{2}\right) 2^{i}$, and the leaf level has work $c_{0} 2^{\log _{3}(n)}$. Putting this together, we have:
$\sum_{i=0}^{\log _{3}(n)-1}\left(\left(\frac{c_{1} n}{3^{i}}+c_{2}\right) 2^{i}\right)+c_{0} 2^{\log _{3}(n)}$
$=\sum_{i=0}^{\log _{3}(n)-1}\left(\frac{c_{1} n 2^{i}}{3^{i}}+c_{2} 2^{i}\right)+c_{0} 2^{\log _{3}(n)}$
$=c_{1} n\left(\sum_{i=0}^{\log _{3}(n)-1}\left(\frac{2}{3}\right)^{i}\right)+c_{2}\left(\sum_{i=0}^{\log _{3}(n)-1} 2^{i}\right)+c_{0} 2^{\log _{3}(n)}$
Using the finite geometric series,
$=c_{1} n\left(\frac{1-\left(\frac{2}{3}\right)^{\log _{3}(n)}}{1-\frac{2}{3}}\right)+c_{2}\left(\frac{1-2^{\log _{3}(n)}}{1-2}\right)+c_{0} 2^{\log _{3}(n)}=3 c_{1} n\left(1-\left(\frac{2}{3}\right)^{\log _{3}(n)}\right)+c_{2}\left(2^{\log _{3}(n)}-1\right)+c_{0} 2^{\log _{3}(n)}$
$=3 c_{1} n\left(1-\frac{n^{\log _{3}(2)}}{n}\right)+c_{2}\left(n^{\log _{3}(2)}-1\right)+c_{0} n^{\log _{3}(2)}$
$=3 c_{1} n-3 c_{1} n^{\log _{3}(2)}+c_{2} n^{\log _{3}(2)}-c_{2}+c_{0} n^{\log _{3}(2)}$
$=3 c_{1} n+\left(c_{0}+c_{2}-3 c_{1}\right) n^{\log _{3}(2)}-c_{2}$

